Computing probability intervals under independency constraints

نویسنده

  • Linda C. van der Gaag
چکیده

Many AI researchers argue that probability theory is only capable of dealing with uncertainty in situations where a fully specified joint probability distribution is available, and conclude that it is not suitable for application in AI systems. Probability intervals, however, constitute a means for expressing incompleteness of information. We present a method for computing probability interval! for probabilities of interest from a partial specification of a joint probability distribution. Our method improves on earlier approaches by all owing for independency relation­ ships between statistical variables to be exploited .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean

 ‎A Poisson distribution is well used as a standard model for analyzing count data‎. ‎So the Poisson distribution parameter estimation is widely applied in practice‎. ‎Providing accurate confidence intervals for the discrete distribution parameters is very difficult‎. ‎So far‎, ‎many asymptotic confidence intervals for the mean of Poisson distribution is provided‎. ‎It is known that the coverag...

متن کامل

An Experimental Study of Field Dependency in Altered Extreme Environments

Failure to address extreme environments constraints at the human-computer interaction level may lead to the commission of critical and potentially fatal errors. This experimental study addresses gaps in our current theoretical understanding of the impact of±Gz accelerations and field dependency independency on task performance in human-computer interaction. It investigates the effects of ±Gz ac...

متن کامل

Adaptive Confidence Intervals for Regression Functions Under Shape Constraints

Adaptive confidence intervals for regression functions are constructed under shape constraints of monotonicity and convexity. A natural benchmark is established for the minimum expected length of confidence intervals at a given function in terms of an analytic quantity, the local modulus of continuity. This bound depends not only on the function but also the assumed function class. These benchm...

متن کامل

Determination of Maximum Bayesian Entropy Probability Distribution

In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.

متن کامل

Shrinking Horizon Model Predictive Control with Signal Temporal Logic Constraints under Stochastic Disturbances

We present Shrinking Horizon Model Predictive Control (SHMPC) for discrete-time linear systems with Signal Temporal Logic (STL) specification constraints under stochastic disturbances. The control objective is to maximize an optimization function under the restriction that a given STL specification is satisfied with high probability against stochastic uncertainties. We formulate a general solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1990